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We report heat transport measurements in a cylindrical convection apparatus rotating
about the vertical axis. The aspect ratio was 1/2. The working fluid was cryogenic
helium gas and the following parameter ranges applied: the Rayleigh number,
Ra , varied in the range 1011 <Ra < 4.3 × 1015, the Taylor number, Ta , varied in
the range 1011 <Ta < 3 × 1015, the convective Rossby number, Ro, varied in the
range 0.4 <Ro < 1.6 and the Prandtl number, Pr , varied in the range 0.7 <Pr < 5.9.
Boussinesq conditions applied quite closely. The heat transport for steady rotation,
under all conditions of the present experiments, was smaller than that for the non-
rotating case. When the rotation rate varied periodically in time, a sharp transition to
a state of significantly enhanced heat transport was observed for modulation Taylor
numbers Ta∗ � 1014, where Ta∗ is based on the peak value of the modulation angular
velocity.

1. Introduction
The Rayleigh–Bénard convection is a paradigm for a number of natural and

engineering flows in which a layer of fluid is heated from below and cooled from
above. When this heating and cooling results in large enough unstable density
gradients, a macroscopic flow is generated. This flow enhances heat transport far
above the molecular limit. The vertical temperature difference, causing buoyancy
force, is measured in terms of the Rayleigh number Ra ≡ αΔTgH 3/νκ , where α is
the isobaric thermal expansion coefficient of the fluid in the container, ΔT is the
temperature difference between the bottom and top walls, g is the acceleration due
to gravity and H is the vertical dimension of the convection cell. The kinematic
viscosity and the thermal diffusivity of the fluid are denoted, respectively, by ν and
κ . The ratio ν/κ is the fluid Prandtl number, Pr . The macroscopic flow becomes
turbulent for large Ra . Rayleigh numbers as high as 1017 have been attained in
laboratory experiments (Niemela et al. 2000) by using low temperature helium gas
as the test fluid in a relatively large apparatus. For simple fluids operating under
‘ideal’ conditions, Ra and Pr determine the state of convection fully. However, other
factors such as the geometry, aspect ratio and the thermal properties of the container
materials can be expected to play some role in all laboratory experiments (see e.g.
Ahlers, Grossmann & Lohse 2009). An advantage of cryogenic experiments, besides
the favourable properties of the gaseous state of helium at these temperatures for
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producing large values and ranges of Ra , is that artifacts due to the imperfect
thermal boundary conditions are relatively small compared to experiments using
common fluids such as water at room temperature. Specifically, the range of Ra
in these experiments has been chosen to assure that even these small artifacts are
minimal (see Niemela & Sreenivasan 2006 and references therein for this discussion).

One particular feature of large-scale geophysical and astrophysical flows is that
convection is always accompanied by rotation, which introduces the Coriolis force.
This is a major factor in such large-scale flows which are also strongly turbulent,
e.g. oceanic and atmospheric flows, convection in the outer core and in the Sun and
other stars. The relative strength of the dimensioned rotation ΩD (in rad s−1) is given
by its non-dimensional form, Ω = (2ΩDH 2/ν), which is a measure of the ratio of
Coriolis force to viscous force and is the inverse of the Ekman number, Ek. It is
customary to consider the Taylor number Ta = Ω2 also. A measure of the relative
importance of Coriolis and buoyancy forces is given by the convective Rossby number
Ro = [Ra/(PrTa)]1/2, which can also be interpreted as the ratio of the rotation period
to the buoyancy time scale. Rewriting Ro as (2ΩD)−1(gαΔT/H )1/2 makes it clear
that the only fluid property on which it depends is the expansion coefficient α in the
combination αΔT . The latter quantity varies over a range that is more or less similar
for all experiments conforming to the Boussinesq approximation. Though it is not
clear if exactly the same limits on αΔT apply to all fluids equally, it is reasonable
to assume that they are of the same order. Thus, considering typical constraints on
size and speed in academic laboratories, we can expect that the lower limit of Ro

will be roughly of the same order of magnitude for them. What can be ‘substantially’
different are the Rayleigh and Taylor numbers themselves. One motivation for the
present experiments is the possibility that the effect of rotation may depend on the
state of convective turbulence (given by Ra and Pr), regardless of the relative values
of the Coriolis and buoyancy forces (given by Ro). Indeed, this idea has been discussed
in a recent paper by King et al. (2009) in which boundary layer ratios are shown to
be more relevant in determining the effects of rotation on turbulent convection than
the Rossby number itself. We will return to this point when we discuss time-varying
rotation below.

The linear stability theory of rotating convection (e.g. Chandrasekhar 1961) says
that the critical Rayleigh number increases with rotation. It is also known from the
Taylor–Proudman theorem that convection in a rotating system away from the walls
tends to arrange itself in vertical columns. Both these results suggest that rotation
would inhibit heat transport. However, Rossby (1969) and a number of recent workers
(Zhong, Ecke & Steinberg 1993; Julien et al. 1996; Liu & Ecke 1997; Kunnen, Clercx &
Geurts 2006, 2008; Oresta, Stringano & Verzicco 2007; Stevens et al. 2009) have found
that heat transport increases with rotation. This enhancement was attributed to the
extra vertical circulation resulting from Ekman suction at the boundaries, although
Kunnen et al. (2006) argued that large rotation rates would weaken and even reverse
this tendency. These studies all correspond to moderate Rayleigh numbers by today’s
standards (below 109 in most). More recently, Zhong et al. (2009) demonstrated that
the enhancement of heat transport diminishes with increasing Ra and decreasing Pr .
Their experiments correspond to Ra between 108 and 1.8 × 1010. As we shall see, the
present results at higher Ra and Ta show that the enhancement effect under steady
rotation not only vanishes but also reverses with increasing Ra and Ta , giving way
to a slight suppression of heat transport even for moderate Pr .

The experiments to be reported here correspond to large Ra (1011 < Ra < 4.3×1015)
and large Ta (1011 <Ta < 3 × 1015); the convective Rossby number varied between
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0.4 and 1.6, so the Coriolis and buoyancy forces are comparable. For most of
the range of Ra the Prandtl number remains constant at 0.7, as expected for a
perfect gas, but increases to about 5.9 at the highest Ra used here. This increase
occurs because the high end of the Ra regime has been attained by approaching the
thermodynamic critical point of helium (see Niemela & Sreenivasan 2003a). For all
conditions of steady rotation explored here, the heat transport is lower than that
in the non-rotating case. An exception occurs under modulated rotation in which
the fluid undergoes periodic spin-up and spin-down cycles of the rotation rate. It
appears plausible that small-scale turbulence generated in the thermal boundary layer
by strong deceleration in the spin-down part does not die away altogether during the
acceleration of the following spin-up, thus decreasing the resistance of the thermal
boundary layer to heat transport and enhancing mixing. This enhancement occurs for
modulation Taylor numbers denoted by Ta∗ – based on the peak modulation angular
velocity – exceeding a transition value to be discussed below. The Rayleigh number
appears to play a secondary role by setting the thickness of the thermal boundary
layer: the enhancement in heat transfer also coincides with the estimated thermal
boundary-layer thickness being of order of the rotationally induced Ekman layer
thickness. Interestingly, this is a criterion adopted recently by King et al. (2009) to
describe a transition between rotationally- and non-rotationally dominated convective
dynamics.

Section 2 provides a brief description of the experimental apparatus. The main
results are contained in § 3. Concluding remarks and future prospects are discussed
in § 4.

2. The apparatus
Aside from the rotating platform, the apparatus is essentially the same as that

described in earlier works (see e.g. Niemela et al. 2000). A thin-wall (0.267 cm) stainless
steel cylinder of diameter 50 cm confines the fluid laterally while two 3.8 cm thick plates
made of oxygen-free high-conductivity annealed copper, having a thermal conductivity
of the order 1 kWm−1K−1 at the measurement temperature, provide top and bottom
thermal boundaries with a separation distance of 100 cm between them. The diameter
to height aspect ratio, Γ , is thus 1/2. A key feature of the apparatus is the ability to
heat the plates uniformly, using distributed thin film heater elements. The controlled
quantities are the heat flux at the bottom plate and the temperature of the top plate,
connected to a cold high heat capacity reservoir filled with liquid helium. Here the
connection to the top plate was made through an adjustable gaseous helium thermal
link. The plate temperature was maintained constant by means of a resistance bridge
and servo. To prevent stray heating by radiation, the convection cell was insulated
by three outer thermal shields at various temperatures and residing in a common
cryo-pumped vacuum space. The helium gas was nominally at 5 K and the wide
range of Ra was achieved primarily by varying the pressure (or density) of the fluid.

Briefly, rotation was provided by placing the entire apparatus on a thick steel plate
attached to a large slewing ring. Platform speed was measured and held constant
by means of an optical encoder on the motor shaft and associated proportional–
integral–derivative (PID) control. All measuring and data storage instruments are
located on the rotating platform with the main power transferred via a heavy-duty
rotating contact slip ring.

All measurements were initiated only after waiting for steady state conditions to
develop. The waiting times varied with Ra , but were typically several hundred cycles
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Figure 1. Log-log plot of Nu/Nu0 versus Ro for Ra =4.3 × 1015 and Pr =5.9.

of the large-scale circulation, occasionally ranging up to a hundred thousand cycle
times.

3. Results
3.1. Heat transport under steady rotation

The Nusselt number, Nu , is the ratio of the measured heat flux to that accomplished,
for identical ΔT and H , by molecular conduction alone. For all conditions of Pr , Ro,
Ra and Ta explored here, Nu is smaller than that without rotation, Nu0. The Nusselt
numbers reported here have been corrected for an adiabatic temperature gradient (see
Tritton 1988), but not for finite sidewall and plate conductivity (Ahlers 2001; Verzicco
2002), for two reasons. First, one does not know the precise form of these corrections
in the presence of rotation and, second, these corrections are exceedingly small
for the non-rotating case in the present range of Ra (Niemela & Sreenivasan 2006).
Subtraction of the parallel empty cell conduction up the sidewalls was made, however.
The nominal procedure was to establish steady heating conditions and to measure Nu
initially under non-rotating conditions; however, no history dependence was observed
for either steady or time-varying rotation, within a measurement uncertainty of order
0.1 %. In the case of periodically modulated rotation, it was necessary to average
measurements of Nu over integer numbers of modulation cycles after establishing
statistically stationary conditions.

The change in the Nusselt number Nu from its value in the non-rotating case, Nu0,
is relatively small for moderate rotation corresponding to convective Rossby numbers
close to unity. We illustrate this for the case of Ra = 4.3×1015 shown in figures 1 and
2, where Nu/Nu0 is plotted against Ro and Ta , respectively, for the same moderate
Pr = 5.9. For these data, relatively modest rotation rates up to 1.05 rad s−1 were used to
avoid vibrations and large centrifugal forces; large magnitudes of Ta were obtained
mainly by working under conditions of small kinematic viscosity, which could be
altered over several orders of magnitude. (In experiments, the heating applied to the
bottom plate is fixed, so the temperature difference ΔT will change slightly when the
apparatus is set in rotation. Nu0 corresponding to this new temperature difference is
obtained by the interpolation of the local Nu–Ra relation for the non-rotating case.
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Figure 2. Log-log plot of Nu/Nu0 versus Ta for Ra = 4.3 × 1015 and Pr = 5.9.

We note that present measurements for the non-rotating case agree well with past
measurements of Niemela et al. 2000.)

The best fits to these rotation data,

Nu = 0.982Nu0Ro0.024±0.001, (3.1)

Nu = 1.48Nu0Ta−0.012±0.001, (3.2)

indicate a weak suppression of heat transport with increasing rotation. This
suppression might initially appear to contradict results at moderate Ra , e.g.
Liu & Ecke (1997) in water (3< Pr < 7; 2 × 105 < Ra < 5 × 108; 0.1 <Ro < 1.5;
0 < Ta < 5 × 109), where an enhancement of heat transport was observed. The
difference in the two cases cannot be attributed to differences in Prandtl number
because it was matched in the present experiments to that of water (figures 1 and 2
correspond, in fact, to Pr =5.9). These authors had already cautioned that their
result – counter-intuitive in the light of Taylor–Proudman stabilization and the
delayed onset of convection in the presence of rotation – was an example of the
difficulty in applying intuition based on non-turbulent states to those at higher Ra .
The present results, which are not entirely unexpected in view of the finding of Zhong
et al. (2009) – conducted at higher Ra than that of Liu & Ecke (1997) – that the
heat-transport enhancement diminishes at higher Ra , re-frame the general caution of
Liu & Ecke (1997).

3.2. Convection under conditions of periodically varying rotation rate

The effects of periodic modulation of the rotation rate, resulting in continual cycles
of spinning up and down, were investigated near the convective onset by Niemela,
Smith & Donnelly (1991) and Thompson, Bajaj & Ahlers (2002). However, relatively
little is known about such processes in strongly turbulent convective systems, where the
diffusive boundary layers are many orders of magnitude smaller than the fluid-layer
thickness and strong circulations and advected plumes exist, leading to a well-mixed
interior (Niemela & Sreenivasan 2008). In this fully turbulent background, cyclic
spin-up and spin-down conditions can have a significant effect on the heat transfer,
as will be shown below. Here, we vary the rotation rate sinusoidally in time as

ΩD(t) = Ω∗
Dcos(ωt). (3.3)
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Figure 3. Schematic of the modulation, ΩD(t)/ΩD(0) (solid line), Ω(t)/Ω(0) (dashed line) and
Ta(t)/Ta(0) (dot-dashed line) versus time. Neither the Taylor number nor the dimensionless
rotation rate Ω depends on the direction of rotation, so the modulation has an effective
frequency of 2 ω.

The rate at which the rotational speed is varied is set by ω, whose inverse was chosen to
be on the order of the large-scale circulation time in the cell – this being one plausible
time scale for turbulent convection. Very large or small ω would be characterized,
respectively, by dominant Stokes layer development and associated viscous waves or
quasi-steady conditions. The most important parameter for the present experiments is
Ω∗

D , which is the peak rotation rate experienced by the flow during a cycle. Since the
direction of rotation should not matter (if the effect of the Earth’s rotation is assumed
to be small), there should be an effective rectification, as observed in temperature
signals which show the characteristic frequency 2 ω (we shall discuss this later with
reference to figure 8). We define the time-dependent dimensionless rotation rate Ω(t)
(the inverse of a similarly time-dependent Ekman number) as

Ω(t) =
2Ω∗

D|cos(ωt)|H 2

ν
(3.4)

and the time-dependent Taylor number as

Ta(t) = Ω(t)2. (3.5)

The parameters ΩD(t), Ω(t) and Ta(t) are plotted schematically in figure 3. The peak
values of these quantities within a cycle will be used to characterize the modulated
state, indicated by the superscript ∗:

Ta∗ = Ω∗2 =

[
2Ω∗

DH 2

ν

]2

. (3.6)

Our goal was to measure the change in Nusselt number, ΔNu , defined by

ΔNu = Nu − Nu0 (3.7)

with varying Ω∗ and Ra . As noted above, we averaged the measurements over integer
number of modulation cycles after establishing statistically stationary conditions.
Figure 4 plots the variation of ΔNu with Ω∗; for increasing Ω∗, we observe ΔNu to
decrease slightly, up to a certain transition value, roughly Ω∗

c ∼ 107 (or Ta∗
c ∼ 1014).
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Figure 4. Values of ΔNu versus Ω∗ for sinusoidally modulated rotation with constant
ω = 0.168 rad s−1. A transition from weak suppression to significant enhancement of heat
transport occurs above about Ω∗ ∼ 107 (Ta∗ ∼ 1014). Ra was not constant over this large range
of Ω∗; the following two figures, however, consider the transition for constant Ra .
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Figure 5. Values of ΔNu versus Ω∗ for sinusoidally modulated rotation for
Ra = 2.35(±0.03) × 1013 showing the transition to enhanced heat transport for fixed Ra .

This is followed by a relatively sharp enhancement of heat transport, i.e. ΔNu becomes
positive and large.

In this data set, ω was held at a fixed value of 0.168 rad s−1, but the large range
of rotation parameters made it difficult to hold Ra fixed while also maintaining
Boussinesq conditions. The special case of constant Ra (see figure 5) shows essentially
the same result. It is worth noting that all enhancement occurs at high Ra , just as
it does for large Ω∗. This coincidence, at least in the trend, appears to have a
relatively trivial explanation: major increases in both Ω∗ and Ra were obtained in
the experiment by moving the operating point to regions of the pressure–temperature
phase space where the kinematic viscosity is low. Indeed, plots of ΔNu against Ra
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or simply against ν−1 are qualitatively indistinguishable. As we shall see below, Ω∗

(or equivalently Ta∗) appears to be the proper ‘control’ parameter for the transition;
nonetheless, Ra may likely play a role in the transition by determining the length and
time scales in the flow.

In terms of a modulation Reynolds number, Re∗, defined as

Re∗1/2 = H

[
2Ω∗

D

ν

]1/2

, (3.8)

the transition occurs for Re∗1/2 of a few thousand. The inverse of the quantity
multiplying H in (3.8) is analogous to the viscous boundary layer in non-rotating
turbulence and is the Ekman layer, δ∗

Ek for the modulated system defined as

δ∗
Ek =

√
ν

2Ω∗
D

= H/Ω∗1/2. (3.9)

Large Ω∗ corresponds to small Ekman layer thickness and stronger pumping from
the boundaries. Our definition of the Ekman layer uses molecular viscosity instead
of an eddy viscosity because the heat transport dynamics is embedded primarily in
the thermal boundary layer, and it appears that the relevant Ekman layer would also
have to be comparable in thickness. Smaller Ekman numbers correspond to stronger
pumping from the boundaries but the usual spin-up times appropriate to ‘the entire
container’, computed for quiescent fluids, are much longer than the modulation
period here. (Since the operating conditions are turbulent, it may be thought that
the Ekman layer thickness would be more reasonably defined by replacing ν in (3.9)
by an effective viscosity. An estimate on that basis would indeed yield thicknesses
comparable to the fluid-layer thickness. One further point is that processes within the
thermal boundary layer are faster than those over H by the factor (2 Nu) and would
be comparable or faster than the modulation period for large Nu (or large Ra).)

As noted above, the Rayleigh number in figure 4 was not held constant; in
fact, much of the variation in Ω∗ was due to varying kinematic viscosity rather
than the rotation amplitude Ω∗

D . In figure 5 we show a subset of the data, also
illustrating the transition, for which the Rayleigh number was held constant at
Ra = 2.35(±0.02)×1013. In figure 6 we show data obtained for Ω∗ sufficiently above the
transition value, for fixed heating conditions, corresponding to Ra = 8.4(±0.1) × 1014.
For these data, the increase in Ω∗ was effected solely by increasing the dimensional
modulation amplitude Ω∗

D . This is indeed shown in figure 6(b) while the same data
are plotted against the dimensionless rotation rate in figure 6(a). In this figure, besides
Ra , the modulation frequency was also fixed at ω = 0.168 rad s−1. Clearly, the factor
3 increase in ΔNu can be attributed directly to the increase in rotational speed of
the container suggesting that the appropriate control parameter for the transition is,
indeed, Ω∗.

As pointed out earlier, the ratio of the conduction layer to the viscous Ekman layer
was considered by King et al. (2009) to be more relevant for convection dynamics
with rotation than the Rossby number. In consideration of this idea, we have taken
a further subset of data for which ‘all’ the modulation parameters were kept fixed
(ω = 0.168 rad s−1 and Ω∗

D = 0.444 rad s−1). Varying Ra produces a change only in
the thermal boundary-layer thickness while varying Ω∗ produces variations only in
the Ekman layer thicknesses, so the two can be varied essentially independently –
except indirectly through interactions with the environment, the thermal boundary-
layer thickness should have no dependence on the rotation parameters. Estimating
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Figure 6. (a) Values of ΔNu versus Ω∗ for fixed heating conditions giving Ra =
8.4(±0.1) × 1014. For these data, ω =0.168 rad s−1. (b) The same data plotted against the
dimensioned amplitude Ω∗

D showing explicitly that the enhancement is directly controlled by
variations in Ω∗

D and suggesting that a purely rotational control parameter is appropriate for
the transition, i.e. Ω∗.

the thermal boundary-layer thickness in a standard way by

δT = H/2Nu (3.10)

and using the Nu–Ra relation, Nu = 0.124Ra0.309, of Niemela et al. (2000) in addition
to (3.9) for the Ekman layer thickness, the ratio of the two boundary-layer thicknesses
is given by

δ∗
Ek/δT

∼=
1

4

Ra0.309

Ω∗1/2
. (3.11)

They become equal when Ra0.309/Ω∗1/2 � 4. We plot δ∗
Ek/δT against Ra0.309Ω∗−1/2 in

figure 7(a) and ΔNu against the same quantity in figure 7(b). The linearity of the data
in figure 7(a) verifies (3.11). It is also the case (see figure 7b) that the two thicknesses
are comparable when the transition to enhanced heat transport occurs, keeping in
mind that the estimates are rough. Indeed, when this sharp transition to enhanced
heat transport was reported first by us in 2008 (Bulletin of the American Physical
Society BAPS.2008.DFD.AS.3), it was thought that such a crossing of thermal and
Ekman boundary-layer thicknesses was responsible. However, this correspondence
cannot be general: at a sufficiently high Ra , the thermal boundary layer always
becomes embedded within the ‘steady’ Ekman layer in the case of fixed rotation
rate, but without any enhancement of Nu . Thus, we may postulate that crossing of
thicknesses is a necessary but not sufficient condition, and that the control parameter
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for both modulation parameters are held constant: Ω∗

D = 0.444 rad s−1 and ω = 0.168 rad s−1.

(b) ΔNu versus Ra0.309Ω∗−1/2.

for the enhancement under modulation, as indicated above, is probably a purely
rotational parameter, i.e. Ω∗. It is of considerable interest to note that similarly sharp
transitions under turbulent conditions have been observed recently by Stevens et al.
(2009).

The results shown in figures 4–7 show that the crossover from a viscous-dominated
system to one dominated by the Coriolis forces coincides with significantly enhanced
heat transport. Clearly, there are poorly understood aspects of turbulent convection
with and without rotation, and the large-scale flow (the so-called ‘mean wind’, see
e.g. Sreenivasan, Bershadskii & Niemela 2002; Niemela & Sreenivasan 2003b; Ahlers
et al. 2009) resulting from the turbulent convection itself has to be considered, even
though this mean wind is rather weakly organized in small aspect ratio cells where
the diameter to height ratio is 1/2 or less (see e.g. Qiu & Tong 2001).

3.3. Time traces of the bottom plate temperature

It is instructive to consider the bottom plate temperature TB under rotation
with and without modulation. In figure 8 we plot TB as a function of time for
Ra = 4.3 × 1015 when the modulated rotation (left part, with dimensional rotation
rate Ω∗

D = 0.67 rad s−1, ω = 0.168 rad s−1) changes to steady rotation (right part,
dimensional rotation rate ΩD = 0.84 rad s−1). The transition from modulated to the
steady state takes place through a spin-down to Ω∗ = 0 and a subsequent spin-up to
the steady rotation after some brief waiting time. At t = 0, the modulation has already
been operating with Ω∗ = 3.52 × 107, above the transition value of approximately 107

for which an enhancement of heat transport was observed. The dashed horizontal
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Figure 8. Traces of the bottom plate temperature as a function of time for Ra =4.3 × 1015.
The left part of the trace corresponds to modulation with Ω∗ = 3.5 × 107 (Ω∗

D =0.67 rad s−1),
ω = 0.168 rad s−1. The modulation is stopped at the position of the left vertical arrow (labelled
A), spinning down to Ω∗ = 0. At the position of the right vertical arrow (labelled B), there
is spin-up to a steady rotation rate of ΩD = 0.84 rad s−1 corresponding to Ω = 4.5 × 107.
The horizontal dashed line is the mean bottom plate temperature for no rotation. For the
modulation, δ∗

Ek/δT = 3.35. The inset shows an expanded view of the transition region from
modulation to impulsive spin-up via the no-rotation state. The large and periodic thermal
signals in the plate at twice the period of modulation, as well as the large temperature spike
immediately following the impulsive spin-up from rest, are presumably due to Ekman pumping
from the boundary.

line shows the mean value of the bottom plate temperature for the same heating
conditions with no rotation. Since the top plate temperature was held fixed, it is easy
to see the enhancement effect on heat transport from TB , which is in the form of
large ‘cold’ spikes in the temperature, providing direct evidence of a strong pumping
action. The modulation is then stopped at the left vertical arrow (labelled ‘A’), with the
apparatus spinning down momentarily to Ω∗ =0. After a brief interval, the apparatus
was spun up to a steady rotation rate ΩD = 0.84 rad s−1 at the right vertical arrow
(‘B’) corresponding to Ω = 4.5 × 107. Even though the Ekman boundary layer for this
steady rotation is considerably larger than the thermal boundary layer, there is no
corresponding enhancement of heat transfer.

An expanded view of the transition is shown in the inset. Here it is clear that the
modulation produces large cold spikes in the bottom plate indicative of intense
impulsive heat transport events that produce large thermal ‘holes’ in the plate
temperature at the frequency of 2 ω. The spin-up of the apparatus from rest to
steady rotation also produces a large cold spike in the temperature trace as shown,
after which the system relaxes to steady state at Ω = 4.5 × 107 (Ta = 2 × 1015) at
which the bottom plate temperature is now warmer than that for the modulated case
as well as the non-rotating case with depressed Nu .

Finally, we illustrate in figure 9 the bottom plate signals for modulated convection
when Ω∗ is well above (a) and just below (b) the transition value of Ω∗ ≈ 107.
Figure 9(a) corresponds to Ω∗ = 3.52×107 and δ∗

Ek/δT = 3.35, same as for the leftmost
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Figure 9. Time traces of the bottom plate temperature for two cases of modulated rotation.
(a) Ω∗ = 3.52×107, δ∗

Ek/δT = 3.35. (b) Ω∗ = 7.35×106, δ∗
Ek/δT = 0.74. The period of modulation

for both cases is the same: ω = 0.168 rad s−1. The temperature range on the ordinate is also the
same. Large periodic cold spikes appear only for the conditions in (a) ( Ω∗ > 107, δ∗

Ek/δT > 1).

part of figure 8 and shows large cold spikes indicative of strong pumping during the
modulation cycle for this Ω∗. Figure 9(b) corresponds to conditions just below
transition, Ω∗ = 7.35 × 106 and δ∗

Ek/δT =0.74. For both cases, ω = 0.168 rad s−1 and
the modulation amplitudes are quite similar (Ω∗

D = 0.67, 0.59 rad s−1, respectively).
The pronounced difference in the time traces shows clearly that the modulation has
no significant effect on the wall temperature for conditions of figure 9(b).

4. Concluding remarks
We have investigated both steady and time-varying rotating turbulent convection

for Ra up to 4.3 × 1015 and Ta up to 3 × 1015 in the steady case; the Rossby number
varied from 0.4 to 1.6. Unlike in previous experimental investigations at lower Ra and
Ta , but similar Ro and Pr , steady rotation results only in a mild suppression of heat
transport. This suppression follows weak power laws in both Ta and (inverse) Ro,
and was shown to be so for moderate Pr = 5.9 similar to that of water. The present
results are consistent with those of Zhong et al., which show that the enhancement
of heat transport decreases as Ra is increased (their observations extended up to
1.8 × 1010). In the recent work by King et al. (2009), the influence of Ro is considered
secondary in importance to the ratio of boundary-layer thicknesses to the Ekman
layer thickness. In these measurements, this ratio is of the order unity.

The sinusoidal modulation of the rotation rate also suppresses heat transport for
time-dependent rotation rates Ω∗ < 107 (Ta∗ < 1014); clearly, for these conditions,
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Ekman pumping does not operate efficiently. Above this transitional value, however,
we observe a sharp enhancement of heat transport, coinciding with the occurrence
of large cold spikes in the bottom plate temperature at the frequency of the rectified
modulation. To our knowledge, this transition has not been reported previously. When
Ra is held constant (including constant ν), it is clear that the enhancement in heat
transport with increasing Ω∗ is directly attributable to increases in the rotation rate.
From a subset of data for which all the modulation parameters were held constant,
we found that the transition to enhanced heat transport occurred roughly when the
Ekman layer nominally exceeded the thermal boundary layer in thickness. However,
this condition does not yield the same result in steady rotation.

Neither the Ekman layer thickness of (3.9) nor the thermal boundary-layer thickness
has been directly measured, which makes conclusions based on their estimated
thicknesses less than firm. The value of such estimates has to be tempered by
the time-varying emission of plumes and the existence of strong fluctuations. While
it appears clear that an effective (and much larger) turbulent viscosity would lead to
an Ekman layer thickness comparable to the cell height (thus making it less relevant
to the problem of heat transport), it is conceivable that an intermediate height would
be relevant to the heat transport problem (see e.g. Niemela & Sreenivasan 2008).

Finally, we remark that rotating convection at very high Rayleigh numbers has
not received the same attention as the case of non-rotating systems. It is of obvious
importance to many geophysics and astrophysics problems, and it is hoped that future
studies will be able to address this issue. It is also important to study this problem
through direct numerical simulations, which will enable proper estimates of various
flow parameters to be made in greater detail.

We thank the Elettra Synchrotron Light Laboratory, Trieste, for providing
laboratory space for these experiments, Snaidero Corporation for providing, as a
gift, a platform for the rotating electronics and Margarita Kuqali of the Polytechnic
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